CU Employee CULytics Founder

12239457660?profile=RESIZE_710x

Data preprocessing is a crucial step in the data analysis pipeline where raw data is cleaned and transformed to prepare it for analysis or modeling. While preprocessing can help in dealing with missing, inconsistent, or noisy data, it can also introduce biases if not done carefully. Here are some examples of data preprocessing bias, some of which can be illustrated using the credit union context:

  1. Imputation of Missing Data: If a credit union imputes missing data on loan applications—say, filling in missing income values with the average income—it might introduce bias if the missingness isn't random. For example, if higher-income individuals are more likely to leave that field blank, the imputation could underestimate their income.

  1. Feature Scaling: Standardizing or normalizing features (like income or loan amounts) can inadvertently give more weight to certain features over others in some algorithms, affecting the outcome of analyses or predictions.

  1. Data Smoothing: While smoothing can help reduce noise in data, over-smoothing might eliminate genuine fluctuations or trends. For instance, smoothing out fluctuations in monthly deposits might miss genuine patterns, like seasonal effects.

  1. Binning Continuous Variables: Converting a continuous variable, like age, into bins (e.g., 18-25, 26-35) can lead to loss of information and might introduce arbitrary boundaries. Two members aged 25 and 26 would be placed in separate bins, even though they're close in age.

  1. Oversampling and Undersampling: To address class imbalance, like in a dataset where loan defaults are rare, one might oversample the default cases or undersample the non-default cases. While this can help models perform better, it can also introduce bias and affect the generalizability of the model.

  1. Removing Outliers: If a credit union decides to remove all loan applications that request unusually high amounts, considering them outliers, it might inadvertently exclude genuine cases or specific segments of the population.

  1. Feature Selection: Choosing which variables to include in a model based on some criteria might leave out important variables. If a credit union uses only employment status and income to predict loan default and ignores credit history, the model might be biased.

  1. One-Hot Encoding: When categorical variables are converted into binary columns, the increase in dimensionality can affect some models. If not handled correctly, this can lead to multicollinearity or overfitting.

  1. Temporal Splitting: In time-series data, splitting data randomly for training and testing can lead to future information leaking into the past. For credit unions, this could mean using future financial data to predict past events, which is not realistic.

  1. Ignoring Data Dependencies: If a credit union has multiple accounts for a single member and treats each account as an independent data point, it might ignore the inherent correlations between a member's accounts, leading to biased models.

To mitigate data preprocessing biases, it's essential to understand the data, the context, and the implications of preprocessing decisions. Validating models or analyses on diverse datasets and continually re-evaluating preprocessing choices are also good practices.

E-mail me when people leave their comments –

You need to be a member of CULytics Community to add comments!

Join CULytics Community

 

advantedge
altair
ibi
arka
trellance
coopfs
dfa
wherescape
alkami
prismacampaigns
marquis
aiq
totex
cnet
datava
aun
cinch
know

Related Post

 

Ad Unit Settings






Ad Url Settings

 

api-lead-approach
the-amazon-lending-experience
executing-advanced-analytics-do-s-and-don-t
lending-transformation-old-vs-new
data-journey-building-strong-analytical-practices
4-step-iterative-process-building-a-relevant-analytics-practice
significant-measures-towards-new-normal
building-a-strong-analytics-practice-recipe-for-success
data-warehouse-evaluation-and-implementation
explainable-ai-trust-and-transparency
forecasting
top-50-members-using-transactional-website-jun-2020
top-50-cus-with-highest-and-lowest-efficiency-june-2020
importance-of-financial-risk-management
secret-sauce-for-long-term-sustainable-business-intelligence-succ
top-pfm-technologies
secret-sauce-for-long-term-sustainable-business-intelligence-succ
top-pfm-technologies
data-warehouse-and-bi-technologies-opportunities-challenges
top-chatbot-technologies
keys-to-building-an-effective-branch-or-atm-network
top-50-credit-unions-with-highest-and-lowest-accounts-per-member
lowest-and-highest-net-income-per-branch
marketing-holy-grail
top-50-most-and-least-delinquent-credit-unions
modern-marketing-technologies
incremental-low-cost-data-driven-wins
power-of-storytelling
the-cost-of-not-investing-in-data-governance
questions-you-should-ask-before-investing-in-data-warehouse
learnings-from-new-data-based-on-auto-loan-pricing
5-questions-you-need-to-ask-before-investing-in-data-governance
digital-marketing-maturity-models-for-credit-unions
marketing-expense-per-member
top-2-reasons-that-are-holding-credit-unions-back-when-they-are-i
using-data-analytics-to-manage-lending-complexity-while-driving-h
5-reasons-your-credit-union-should-invest-in-data-and-digital-now
top-50-most-and-least-efficient-credit-unions
retail-financial-services-outlook-during-covid-19
use-of-operational-analytics-to-mitigate-the-impact-of-covid-19
top-50-credit-unions-based-on-asset-size
cu-peer-comparison-dashboard
cu-peer-benchmark
all-about-machine-learning-engineering
top-web-design-trends
most-important-social-media-marketing-trends
state-of-digital-marketing-maturing-in-credit-unions
top-kpis-for-email-marketing
data-cloud-and-the-digital-transformation-imperative
digital-trinity-and-you
phases-of-financial-industry
analytics-roundtable-workshop
invitation-to-join-digital-transformation-hub
analytics-in-the-credit-union-business
value-of-member-centricity-and-analytics-in-the-growth-of-cus
all-about-membership-analytics
top-fraud-management-technologies
getting-started-with-your-data-analytics-journey
explore-vizualization-for-credit-unions
investment-in-website-personalization-technologies
data-analytics-supporting-cu-s-first-member-philosophy
loyalty-rewards-and-retention-technologies
member-experience-analytics
channel-analytics-and-its-importance
project-portfolio-management-technologies
investment-in-self-service-data-preparation-technologies
self-service-data-preparation-technologies
new-frontier-in-customer-experience-management
role-of-marketing-analytics-in-credit-unions
important-aspects-of-consumer-lending-analytics
kpis-on-website-analytics
journey-towards-bank-less-banking
investment-in-crm-technologies
top-omni-channel-vendors
conversational-banking-solutions
/top-kpis-for-chief-information-officer
mistakes-to-avoid-when-implementing-a-omnichannel-member
top-things-to-consider-when-building-dashboards
making-digital-marketing-more-agile-through-tag-managers
cecl-solution-providers
mistakes-to-avoid-while-implementing-marketing-automation
p2p-payment-integrated-solutions
kpis-for-social-media-tracking
kpis-for-human-resources-management
investment-in-fintechs-should-or-should-not
top-kpis-for-online-banking
investment-in-marketing-automation-technologies
investment-in-e-signature-technologies-should-or-should-not
tips-and-tricks-to-a-successful-bi-program
kpis-for-credit-card-business
kpis-for-digital-marketing
kpis-for-consumer-lending
hot-topics-for-credit-union-data-leaders
kpis-for-debt-collections
kpis-for-finance
website-personalization-tools
data-integration-technologies
robotic-process-automation-tools
why-data-analytics-initiatives-fail
electronic-signature-softwares
data-governance-tools-for-credit-unions
digital-and-mobile-banking-technologies
report-inconsistencies-are-frustrating
is-your-culture-ready-for-data-analytics
three-big-data-myths
turning-transaction-data-into-a-goldmine-a-becu-case-study
call-for-presentation-for-2019-credit-union-analytics-summit-is-n
top-10-keys-to-successful-data-analytics-practice
credit-union-chooses-accountscore-for-open-banking-transaction-da
how-much-do-you-spend-to-serve-a-customer
marketing-automation-technologies-for-credit-union
alexa-ask-first-abilene-fcu-for-my-balance
dataweb-content-management-technologies-for-credit-unions
efficiency-ratio
web-analytics-technologies
data-warehousing-software-for-banks
customer-experience-software
the-best-kept-secret-for-credit-union-data-analytics
mark-sievewright-on-technology-trends
naveen-jain-on-credit-union-analytics-summit-2018
why-analytics-doesn-t-make-a-difference-by-gary-angel
cuas2018-harnessing-the-right-data
build-a-financial-phone-assistant-for-your-credit-union-in-3-step
2018-culytics-analytics-challenge-winner
update-from-naveen
error-resolution
benefits-of-conversational-apps
who-are-your-most-valuable-members-part-1
how-alexa-can-help-your-credit-union
top-10-kpis-for-measuring-retail-channel-performance
how-much-is-too-much-personalization
top-10-kpis-for-measuring-contact-center-efficiency
pressure-on-margins-for-auto-loans-indirect-auto-loans-declining
best-business-intelligence-technologies-for-credit-unions
establishing-a-thriving-data-analytics-practice-is-a-journey
educational-presentations-from-the-2017-axfi-conference
modelling-alternatives-for-cecl-a-deep-future-analytics-study
data-analytics-use-cases-for-credit-unions-infographic
data-analytics-opportunities-in-credit-union-business
loan-application-analytics-with-cufx
machine-learning-delivers-great-consumer-experiences
deep-insights-of-credit-union-members-data-with-machine-learning
web-analytics-reporting-tips-for-credit-unions
big-data-strategy-roadmap-our-data-journey
webinar-framework-for-member-focused-decision-making
too-many-regulations-hurt-credit-union-members
digital-marketing-automation-solutions
online-banking-boom
transformation-transactions-to-relationships
top-dispute-management-technologies
2020-retail-trends
future-of-artificial-intelligence
2020-culytics-summit-attendee-dashboard
repositioning-the-role-of-marketing
marketing-automation-a-step-towards-marketing-transformation
strategic-agility
using-data-to-navigate-through-the-new-normal
digital-transformation-bcu
highest-and-lowest-new-loan-balances-per-branch-as-of-jun-2020
-new-members-ratio-as-of-june-2020
cus-with-highest-and-lowest-loan-grants-per-member-june-2020
self-service-data-preparation-technologies
highest-and-lowest-marketing-expense-per-member-june-2020
the-amazon-lending-experience
api-lead-approach
4-step-iterative-process-building-a-relevant-analytics-practice
data-journey-building-strong-analytical-practices
post-election-the-cu-outlook
most-and-least-delinquent-credit-unions-sept-2020
leveraging-ach-data-to-produce-real-outcomes
member-engagement-scores-benefits
member-engagement-key-to-serve-the-best
story-of-james-an-intelligence-transformation
executive-kpis-the-pulse-of-the-organization
untangling-member-journey
onboarding-strategy-to-deliver-success
the-importance-of-digital-technologies
top-interactive-financial-calculators
using-artificial-intelligence-to-improve-your-productivity
organizational-transformation-to-drive-growth
multi-year-journey-through-data-transformation
top-50-cus-with-the-highest-and-lowest-member-per-branch
digital-transformation-lessons-through-the-eyes-of-a-ceo
organizational-readiness-for-digital-transformation
ruthless-prioritization-to-do-more-to-learn-more-and-to-earn-more
performance-measures-for-digital-services
analytical-maturity-journey-towards-growth
less-is-more-the-necessity-of-focus-for-strategic-success
solving-the-crm-mrm-puzzle
insights-driven-messaging-member-and-product-onboarding
performance-measures-for-marketing
data-insights-that-drive-member-product-innovation
solving-the-crm-mrm-puzzle
the-agility-flywheel-a-strategy-that-never-goes-out-of-the-way
artificial-intelligence-as-a-playing-field-for-credit-unions
performance-measures-for-call-centers
top-automl-technologies
performance-measures-for-lending
building-business-case-for-data-analytics
driving-innovation-and-change
data-analyze-decide-and-create
digital-readiness-important-steps-to-achieve
digital-readiness-important-steps-to-achieve
enabling-credit-unions-with-ai
culytics-virtual-summit-2022-a-resounding-success
culytics-virtual-summit-2022-day-1
digital-banking-roundtable
digital-marketing-roundtable
transformative-lessons-from-a-chief-digital-officer
data-analytics-roundtable-mar-11
rewind-2022-culytics-day-key-highlights
data-analytics-team-roles
data-warehouse-development
data-analytics-team-size
is-your-data-analytics-program-not-delivering-results
active-deposit-management-for-profitable-growth
data-modeling
maximize-your-success-with-2023-CULytics-summit
biggest-opportunities-for-credit-unions
should-ceos-attend-the-culytics-summit
the-cost-of-a-wrong-decision
biggest-roadblocks-in-becoming-data-driven
a-journey-for-all-organizational-maturity-levels
maximize-your-data-analytics-checkup
navigating-the-data-analytics-landscape
improving-data-literacy
why-credit-union-leaders-should-invest-in-their-teams
why-credit-unions-should-not-invest-in-building-predictive-models
why-should-measure-the-success-of-data-analytics-program
cost-of-choosing-the-wrong-data-analytics-technology-stack
why-data-analytics-strategy-focus-on-supply-and-demand-side
kpis-to-measure-the-success-of-data-analytics-program
data-analytics-for-credit-union-branch-heads
data-organizing-principles
top-data-warehouse-storage-technologies
discover-the-hidden-truth-behind-watermelon-kpis
unveiling-the-hidden-dangers-of-cobra-effect-on-kpis
are-you-accurately-interpreting-your-kpi
unmasking-biases-a-guide-to-data-analysis-and-kpi-definition
uncover-the-power-of-proxy-kpis
unraveling-the-hidden-impact-of-sampling-bias-in-credit-unions
bi-department-structure
hidden-impact-of-confirmation-bias-in-credit-unions
getting-executive-attention-for-your-data-analytics-program
uncovering-biases-in-data-preprocessing
navigating-missing-data-in-credit-unions
navigating-sampling-bias-in-cu
unleash-the-power-of-real-time-data-use-cases
how-confirmation-bias-impacts-cus
breaking-down-selection-bias-in-credit-unions
unmasking-reporting-bias
elevate-your-cu-with-data-analytics-expertise
understanding-and-tackling-volunteer-bias-in-credit-unions
time-period-bias-in-credit-union
overcoming-biases-in-credit-unions
embracing-the-future-fast-future-fundamentals-program-equips-cred
unlock-growth-and-efficiency-credit-unions-guide-to-generative-ai
how-better-data-and-behavioral-biometrics-can-help-credit-unions-
harnessing-the-power-of-data-in-credit-unions
leveraging-third-party-data-a-strategic-guide-for-credit-unions
unlocking-member-insights-how-cus-can-leverage-third-party-data
enhancing-customer-experience-through-third-party-data
third-party-data-integration-techniques-and-technologies
the-future-of-lending-third-party-data-role-in-credit-decisioning
how-third-party-information-shapes-cu-strategies
using-data-to-improve-access-to-credit-for-low-income-members
designing-financial-products-for-low-income-members-using-data
measuring-and-enhancing-the-impact-of-support-programs
data-governance-why-selling-internally-is-important
selling-data-governance-in-your-credit-union
building-a-business-case-and-engaging-stakeholders
creating-a-data-governance-roadmap-and-executing-it
measuring-and-demonstrating-the-impact-of-data-governance
sustaining-momentum-keeping-data-governance-a-priority
overcoming-challenges-in-transaction-data-analysis-credit-unions
empowering-members-through-transaction-data
how-credit-unions-leverage-transaction-data-best-practices
unlocking-financial-independence-the-power-of-transaction-data
the-power-of-transaction-data-enrichment
avoid-financial-reputation-and-member-trust-issues
introduction-to-model-risk-management
week-1-mrm-a-practitioner-s-approach
week-2-guide-to-identifying-and-maintaining-models
survey-insights-navigating-mrm-in-credit-unions
week-3-application-of-mrm-insights-to-sound-model-development-eff
unlocking-the-secrets-to-attracting-gen-y-and-z
creating-a-seamless-member-experience-for-gen-y-and-gen-z
data-analytics-maturity-assessment-report
marketing-to-gen-y-and-z-strategies-that-work-for-credit-unions
the-imperative-of-engaging-millennials-and-gen-z
cu-build-lasting-relationships-with-gen-z-financial-literacy
how-social-responsibility-drives-gen-z-membership
loyalty-programs-that-work-keeping-gen-y-and-z-members-engaged
insights-on-engaging-millennials-and-gen-z-at-credit-union
ai-driven-member-experience
streamlining-operations-with-ai
innovation-and-member-inclusion-in-ai-credit-risk-models
ai-risk-management-enhancing-fraud-detection-and-cybersecurity
how-ai-is-transforming-data-analytics-for-credit-union
overcoming-ai-adoption-challenges-in-credit-unions
the-state-of-ai-in-credit-unions-survey-insights
creating-a-culture-of-innovation
building-the-foundation
closing-the-talent-gap