CU Employee CULytics Founder

12253841280?profile=RESIZE_710x

Handling missing data is a significant challenge in many industries, including in the financial and credit union sectors. Incorrect or biased treatment of missing data can have severe consequences, such as unfair loan approvals or skewed financial risk assessments.

Here are some methods used in the credit union world to handle missing data, along with the potential biases they might introduce:

  1. Deletion (Listwise or Pairwise):

    • Description: This involves removing entire observations (rows) where any single value is missing.

    • Potential Bias: If the missing data isn't random, this can lead to a non-representative sample, especially if a particular group is more likely to have missing data. For instance, if young loan applicants tend not to have a credit history and get excluded, the resulting analysis will skew towards older individuals.

  1. Mean/Median/Mode Imputation:

    • Description: Replace missing values with the mean (for continuous data), median (when data has outliers), or mode (for categorical data).

    • Potential Bias: It assumes that the missing value is close to the average, which might not always be the case. This can underestimate variability and artificially inflate the number of data points at the mean/median/mode. For example, assuming missing incomes as the mean income might under-represent both low and high earners.

  1. Regression Imputation:

    • Description: Use regression models to predict and impute missing values based on other related variables.

    • Potential Bias: This assumes that there's a linear relationship between the missing data and other variables. If incorrect, this can lead to biased estimates.

  1. Last Observation Carried Forward (LOCF):

    • Description: Used mainly in time-series data, where the last known value is used to fill subsequent missing values.

    • Potential Bias: It assumes trends don't change, which can be problematic if there are fluctuations or shifts in the data over time. This can lead to incorrect trend analysis in financial time-series data.

  1. Stochastic Regression Imputation:

    • Description: Similar to regression imputation, but includes a random residual term to account for prediction errors.

    • Potential Bias: It's still based on the assumption that other variables can predict the missing value, and introducing randomness can sometimes add noise.

  1. Multiple Imputation:

    • Description: Multiple datasets are created with different imputations, and analyses are performed on each to get combined results.

    • Potential Bias: While this method reduces the uncertainty of imputed values, the choice of imputation model can still introduce bias if the underlying assumptions are incorrect.

  1. K-Nearest Neighbors (KNN) Imputation:

    • Description: Missing values are imputed using values from "k" similar observations.

    • Potential Bias: If the choice of "k" or the distance metric isn't appropriate, it might lead to biased imputations.

In the credit union world, understanding the nature of missing data is crucial. For instance, if a person doesn't provide their monthly expenditure, is it because it's too high, too low, or they just forgot? The reason can greatly affect the method of imputation.

Lastly, biases can be mitigated by:

  • Using advanced models like random forests or deep learning for imputation, which can capture complex patterns.

  • Regularly validating and cross-validating the data imputation methods against actual data to gauge their accuracy.

  • Maintaining transparency and open communication about the methods used so stakeholders understand potential risks and uncertainties.
E-mail me when people leave their comments –

You need to be a member of CULytics Community to add comments!

Join CULytics Community

 

advantedge
altair
ibi
arka
trellance
coopfs
dfa
wherescape
alkami
prismacampaigns
marquis
aiq
totex
cnet
datava
aun
cinch
know

Related Post

 

Ad Unit Settings






Ad Url Settings

 

api-lead-approach
the-amazon-lending-experience
executing-advanced-analytics-do-s-and-don-t
lending-transformation-old-vs-new
data-journey-building-strong-analytical-practices
4-step-iterative-process-building-a-relevant-analytics-practice
significant-measures-towards-new-normal
building-a-strong-analytics-practice-recipe-for-success
data-warehouse-evaluation-and-implementation
explainable-ai-trust-and-transparency
forecasting
top-50-members-using-transactional-website-jun-2020
top-50-cus-with-highest-and-lowest-efficiency-june-2020
importance-of-financial-risk-management
secret-sauce-for-long-term-sustainable-business-intelligence-succ
top-pfm-technologies
secret-sauce-for-long-term-sustainable-business-intelligence-succ
top-pfm-technologies
data-warehouse-and-bi-technologies-opportunities-challenges
top-chatbot-technologies
keys-to-building-an-effective-branch-or-atm-network
top-50-credit-unions-with-highest-and-lowest-accounts-per-member
lowest-and-highest-net-income-per-branch
marketing-holy-grail
top-50-most-and-least-delinquent-credit-unions
modern-marketing-technologies
incremental-low-cost-data-driven-wins
power-of-storytelling
the-cost-of-not-investing-in-data-governance
questions-you-should-ask-before-investing-in-data-warehouse
learnings-from-new-data-based-on-auto-loan-pricing
5-questions-you-need-to-ask-before-investing-in-data-governance
digital-marketing-maturity-models-for-credit-unions
marketing-expense-per-member
top-2-reasons-that-are-holding-credit-unions-back-when-they-are-i
using-data-analytics-to-manage-lending-complexity-while-driving-h
5-reasons-your-credit-union-should-invest-in-data-and-digital-now
top-50-most-and-least-efficient-credit-unions
retail-financial-services-outlook-during-covid-19
use-of-operational-analytics-to-mitigate-the-impact-of-covid-19
top-50-credit-unions-based-on-asset-size
cu-peer-comparison-dashboard
cu-peer-benchmark
all-about-machine-learning-engineering
top-web-design-trends
most-important-social-media-marketing-trends
state-of-digital-marketing-maturing-in-credit-unions
top-kpis-for-email-marketing
data-cloud-and-the-digital-transformation-imperative
digital-trinity-and-you
phases-of-financial-industry
analytics-roundtable-workshop
invitation-to-join-digital-transformation-hub
analytics-in-the-credit-union-business
value-of-member-centricity-and-analytics-in-the-growth-of-cus
all-about-membership-analytics
top-fraud-management-technologies
getting-started-with-your-data-analytics-journey
explore-vizualization-for-credit-unions
investment-in-website-personalization-technologies
data-analytics-supporting-cu-s-first-member-philosophy
loyalty-rewards-and-retention-technologies
member-experience-analytics
channel-analytics-and-its-importance
project-portfolio-management-technologies
investment-in-self-service-data-preparation-technologies
self-service-data-preparation-technologies
new-frontier-in-customer-experience-management
role-of-marketing-analytics-in-credit-unions
important-aspects-of-consumer-lending-analytics
kpis-on-website-analytics
journey-towards-bank-less-banking
investment-in-crm-technologies
top-omni-channel-vendors
conversational-banking-solutions
/top-kpis-for-chief-information-officer
mistakes-to-avoid-when-implementing-a-omnichannel-member
top-things-to-consider-when-building-dashboards
making-digital-marketing-more-agile-through-tag-managers
cecl-solution-providers
mistakes-to-avoid-while-implementing-marketing-automation
p2p-payment-integrated-solutions
kpis-for-social-media-tracking
kpis-for-human-resources-management
investment-in-fintechs-should-or-should-not
top-kpis-for-online-banking
investment-in-marketing-automation-technologies
investment-in-e-signature-technologies-should-or-should-not
tips-and-tricks-to-a-successful-bi-program
kpis-for-credit-card-business
kpis-for-digital-marketing
kpis-for-consumer-lending
hot-topics-for-credit-union-data-leaders
kpis-for-debt-collections
kpis-for-finance
website-personalization-tools
data-integration-technologies
robotic-process-automation-tools
why-data-analytics-initiatives-fail
electronic-signature-softwares
data-governance-tools-for-credit-unions
digital-and-mobile-banking-technologies
report-inconsistencies-are-frustrating
is-your-culture-ready-for-data-analytics
three-big-data-myths
turning-transaction-data-into-a-goldmine-a-becu-case-study
call-for-presentation-for-2019-credit-union-analytics-summit-is-n
top-10-keys-to-successful-data-analytics-practice
credit-union-chooses-accountscore-for-open-banking-transaction-da
how-much-do-you-spend-to-serve-a-customer
marketing-automation-technologies-for-credit-union
alexa-ask-first-abilene-fcu-for-my-balance
dataweb-content-management-technologies-for-credit-unions
efficiency-ratio
web-analytics-technologies
data-warehousing-software-for-banks
customer-experience-software
the-best-kept-secret-for-credit-union-data-analytics
mark-sievewright-on-technology-trends
naveen-jain-on-credit-union-analytics-summit-2018
why-analytics-doesn-t-make-a-difference-by-gary-angel
cuas2018-harnessing-the-right-data
build-a-financial-phone-assistant-for-your-credit-union-in-3-step
2018-culytics-analytics-challenge-winner
update-from-naveen
error-resolution
benefits-of-conversational-apps
who-are-your-most-valuable-members-part-1
how-alexa-can-help-your-credit-union
top-10-kpis-for-measuring-retail-channel-performance
how-much-is-too-much-personalization
top-10-kpis-for-measuring-contact-center-efficiency
pressure-on-margins-for-auto-loans-indirect-auto-loans-declining
best-business-intelligence-technologies-for-credit-unions
establishing-a-thriving-data-analytics-practice-is-a-journey
educational-presentations-from-the-2017-axfi-conference
modelling-alternatives-for-cecl-a-deep-future-analytics-study
data-analytics-use-cases-for-credit-unions-infographic
data-analytics-opportunities-in-credit-union-business
loan-application-analytics-with-cufx
machine-learning-delivers-great-consumer-experiences
deep-insights-of-credit-union-members-data-with-machine-learning
web-analytics-reporting-tips-for-credit-unions
big-data-strategy-roadmap-our-data-journey
webinar-framework-for-member-focused-decision-making
too-many-regulations-hurt-credit-union-members
digital-marketing-automation-solutions
online-banking-boom
transformation-transactions-to-relationships
top-dispute-management-technologies
2020-retail-trends
future-of-artificial-intelligence
2020-culytics-summit-attendee-dashboard
repositioning-the-role-of-marketing
marketing-automation-a-step-towards-marketing-transformation
strategic-agility
using-data-to-navigate-through-the-new-normal
digital-transformation-bcu
highest-and-lowest-new-loan-balances-per-branch-as-of-jun-2020
-new-members-ratio-as-of-june-2020
cus-with-highest-and-lowest-loan-grants-per-member-june-2020
self-service-data-preparation-technologies
highest-and-lowest-marketing-expense-per-member-june-2020
the-amazon-lending-experience
api-lead-approach
4-step-iterative-process-building-a-relevant-analytics-practice
data-journey-building-strong-analytical-practices
post-election-the-cu-outlook
most-and-least-delinquent-credit-unions-sept-2020
leveraging-ach-data-to-produce-real-outcomes
member-engagement-scores-benefits
member-engagement-key-to-serve-the-best
story-of-james-an-intelligence-transformation
executive-kpis-the-pulse-of-the-organization
untangling-member-journey
onboarding-strategy-to-deliver-success
the-importance-of-digital-technologies
top-interactive-financial-calculators
using-artificial-intelligence-to-improve-your-productivity
organizational-transformation-to-drive-growth
multi-year-journey-through-data-transformation
top-50-cus-with-the-highest-and-lowest-member-per-branch
digital-transformation-lessons-through-the-eyes-of-a-ceo
organizational-readiness-for-digital-transformation
ruthless-prioritization-to-do-more-to-learn-more-and-to-earn-more
performance-measures-for-digital-services
analytical-maturity-journey-towards-growth
less-is-more-the-necessity-of-focus-for-strategic-success
solving-the-crm-mrm-puzzle
insights-driven-messaging-member-and-product-onboarding
performance-measures-for-marketing
data-insights-that-drive-member-product-innovation
solving-the-crm-mrm-puzzle
the-agility-flywheel-a-strategy-that-never-goes-out-of-the-way
artificial-intelligence-as-a-playing-field-for-credit-unions
performance-measures-for-call-centers
top-automl-technologies
performance-measures-for-lending
building-business-case-for-data-analytics
driving-innovation-and-change
data-analyze-decide-and-create
digital-readiness-important-steps-to-achieve
digital-readiness-important-steps-to-achieve
enabling-credit-unions-with-ai
culytics-virtual-summit-2022-a-resounding-success
culytics-virtual-summit-2022-day-1
digital-banking-roundtable
digital-marketing-roundtable
transformative-lessons-from-a-chief-digital-officer
data-analytics-roundtable-mar-11
rewind-2022-culytics-day-key-highlights
data-analytics-team-roles
data-warehouse-development
data-analytics-team-size
is-your-data-analytics-program-not-delivering-results
active-deposit-management-for-profitable-growth
data-modeling
maximize-your-success-with-2023-CULytics-summit
biggest-opportunities-for-credit-unions
should-ceos-attend-the-culytics-summit
the-cost-of-a-wrong-decision
biggest-roadblocks-in-becoming-data-driven
a-journey-for-all-organizational-maturity-levels
maximize-your-data-analytics-checkup
navigating-the-data-analytics-landscape
improving-data-literacy
why-credit-union-leaders-should-invest-in-their-teams
why-credit-unions-should-not-invest-in-building-predictive-models
why-should-measure-the-success-of-data-analytics-program
cost-of-choosing-the-wrong-data-analytics-technology-stack
why-data-analytics-strategy-focus-on-supply-and-demand-side
kpis-to-measure-the-success-of-data-analytics-program
data-analytics-for-credit-union-branch-heads
data-organizing-principles
top-data-warehouse-storage-technologies
discover-the-hidden-truth-behind-watermelon-kpis
unveiling-the-hidden-dangers-of-cobra-effect-on-kpis
are-you-accurately-interpreting-your-kpi
unmasking-biases-a-guide-to-data-analysis-and-kpi-definition
uncover-the-power-of-proxy-kpis
unraveling-the-hidden-impact-of-sampling-bias-in-credit-unions
bi-department-structure
hidden-impact-of-confirmation-bias-in-credit-unions
getting-executive-attention-for-your-data-analytics-program
uncovering-biases-in-data-preprocessing
navigating-missing-data-in-credit-unions
navigating-sampling-bias-in-cu
unleash-the-power-of-real-time-data-use-cases
how-confirmation-bias-impacts-cus
breaking-down-selection-bias-in-credit-unions
unmasking-reporting-bias
elevate-your-cu-with-data-analytics-expertise
understanding-and-tackling-volunteer-bias-in-credit-unions
time-period-bias-in-credit-union
overcoming-biases-in-credit-unions
embracing-the-future-fast-future-fundamentals-program-equips-cred
unlock-growth-and-efficiency-credit-unions-guide-to-generative-ai
how-better-data-and-behavioral-biometrics-can-help-credit-unions-
harnessing-the-power-of-data-in-credit-unions
leveraging-third-party-data-a-strategic-guide-for-credit-unions
unlocking-member-insights-how-cus-can-leverage-third-party-data
enhancing-customer-experience-through-third-party-data
third-party-data-integration-techniques-and-technologies
the-future-of-lending-third-party-data-role-in-credit-decisioning
how-third-party-information-shapes-cu-strategies
using-data-to-improve-access-to-credit-for-low-income-members
designing-financial-products-for-low-income-members-using-data
measuring-and-enhancing-the-impact-of-support-programs
data-governance-why-selling-internally-is-important
selling-data-governance-in-your-credit-union
building-a-business-case-and-engaging-stakeholders
creating-a-data-governance-roadmap-and-executing-it
measuring-and-demonstrating-the-impact-of-data-governance
sustaining-momentum-keeping-data-governance-a-priority
overcoming-challenges-in-transaction-data-analysis-credit-unions
empowering-members-through-transaction-data
how-credit-unions-leverage-transaction-data-best-practices
unlocking-financial-independence-the-power-of-transaction-data
the-power-of-transaction-data-enrichment
avoid-financial-reputation-and-member-trust-issues
introduction-to-model-risk-management
week-1-mrm-a-practitioner-s-approach
week-2-guide-to-identifying-and-maintaining-models
survey-insights-navigating-mrm-in-credit-unions
week-3-application-of-mrm-insights-to-sound-model-development-eff
unlocking-the-secrets-to-attracting-gen-y-and-z
creating-a-seamless-member-experience-for-gen-y-and-gen-z
data-analytics-maturity-assessment-report
marketing-to-gen-y-and-z-strategies-that-work-for-credit-unions
the-imperative-of-engaging-millennials-and-gen-z
cu-build-lasting-relationships-with-gen-z-financial-literacy
how-social-responsibility-drives-gen-z-membership
loyalty-programs-that-work-keeping-gen-y-and-z-members-engaged
insights-on-engaging-millennials-and-gen-z-at-credit-union
ai-driven-member-experience
streamlining-operations-with-ai
innovation-and-member-inclusion-in-ai-credit-risk-models
ai-risk-management-enhancing-fraud-detection-and-cybersecurity
how-ai-is-transforming-data-analytics-for-credit-union
overcoming-ai-adoption-challenges-in-credit-unions
the-state-of-ai-in-credit-unions-survey-insights
creating-a-culture-of-innovation
building-the-foundation
closing-the-talent-gap